LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cd isotopes trace periodic (bio)geochemical metal cycling at the verge of the Cambrian animal evolution

Photo by geraninmo from unsplash

Abstract Cadmium (Cd) isotopes are an emerging proxy for biological controlled metal and nutrient cycling in the modern oceans, but its potential as a geochemical proxy in ancient environments is… Click to show full abstract

Abstract Cadmium (Cd) isotopes are an emerging proxy for biological controlled metal and nutrient cycling in the modern oceans, but its potential as a geochemical proxy in ancient environments is still uncertain yet. Sequential leaching experiments of organic matter (OM)-rich shales from the early Cambrian Niutitang Formation (Fm.) were performed in order to understand the cycling of bioessential metals short after the Cambrian animal evolution. Carbonate, OM, sulphide and silicate leachates of OM-rich shales show an overall Cd isotope variation of 6 e112Cd/110Cd (e112Cd) units, indicating preferential incorporation of light Cd isotopes in the order sulphide > OM > carbonate > silicate. Carbonate leachates not only show negative correlations of e112Cd with bulk-rock total organic carbon (TOC) and δ13Corg but also show co-variations with redox-sensitive elements and bioessential metal concentrations, indicating a combined redox and primary productivity evolution of the early Cambrian Nanhua Basin on the Yangtze. Together with increased Cd/Zn ratios and decreasing total organic carbon (TOC) and redox-sensitive elements (RSE) concentrations in the upper Niutitang, this argues for an increase in essential metal availability for primary producers. Coinciding with the transition from a highly unstable ecosystem shortly after the Precambrian/Cambrian boundary to a more habitable environment increased nutrient uptake, oxygen availability and enhanced dissolved organic carbon (DOC) recycling match with the diversification of early metazoan fossil findings at the studied local. Our findings demonstrate that Cd isotopes in combination with trace metals can be used to infer changes in biogeochemical metal cycling in paleoenvironments and further allow establishing Cd isotope systematics as a reliable paleoproductivity proxy in the search for Earth’s earliest phototrophic life.

Keywords: metal; animal evolution; cambrian animal; evolution; metal cycling; organic carbon

Journal Title: Geochimica et Cosmochimica Acta
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.