LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An assessment of P speciation and P:Ca proxy calibration in coral cores from Singapore and Bali

Photo by coleenr from unsplash

Abstract Phosphorus (P) in corals has shown potential as a proxy for dissolved inorganic phosphate (DIP) in seawater, but additional investigations are needed to understand its incorporation mechanism, down-core applicability,… Click to show full abstract

Abstract Phosphorus (P) in corals has shown potential as a proxy for dissolved inorganic phosphate (DIP) in seawater, but additional investigations are needed to understand its incorporation mechanism, down-core applicability, and sensitivity, especially in oligotrophic environments with low DIP variability. In this study, we used a new method to distinguish between inorganic and organic P in the skeletons of two Porites sp. cores from Singapore and Bali. We found that around 50% of the total P in the corals is organic P, and both inorganic and organic P in the skeleton can correlate with seawater DIP variability. The Bali core was collected offshore of a major agricultural area in which artificial fertilizer use began in the mid-1970s. Total P/Ca in this core shows a large increase in 1974, and is thereafter strongly related to precipitation. This suggests that P/Ca in this coral records the history of agricultural fertilizer run-off. We used the Singapore coral to directly relate skeletal P/Ca to a contemporaneous seawater DIP record. Despite the overall low DIP concentrations and modest seasonal variability at this site, we found a significant correlation between total P/Ca and seawater DIP (r2 = 0.42, P = 0.04, N = 10) after excluding highly oligotrophic periods (DIP

Keywords: singapore bali; dip; cores singapore; seawater dip; proxy

Journal Title: Geochimica et Cosmochimica Acta
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.