LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel PDE10A transcript diversity in the human striatum: Insights into gene complexity, conservation and regulation.

Photo from wikipedia

PDE10A is a cAMP/cGMP phosphodiesterase important in signal transduction within medium spiny neurons of the human striatum. This gene region has been associated with bipolar disorder via case-control and linkage… Click to show full abstract

PDE10A is a cAMP/cGMP phosphodiesterase important in signal transduction within medium spiny neurons of the human striatum. This gene region has been associated with bipolar disorder via case-control and linkage studies. The three most studied human PDE10A isoforms differ in both their N-termini and trafficking within the cell with PDE10A2 found predominantly at the plasma membrane and PDE10A1 and PDE10A19 remaining primarily within the cytosol. RNA-sequencing and 5' RLM-RACE studies of the human putamen and caudate nucleus revealed 16 new exons and 12 novel transcripts of PDE10A, 3 of which are predicted to produce proteins with unique N-termini. The novel first exons of these transcripts are highly conserved in non-human primate species and are rarely found in other mammals. One hundred and eight previously classified intronic SNPs were found within the novel PDE10A exons of which 78% were classified as rare variants. Since most of the rare variants localize to 5' UTR regions, they may influence PDE10A transcription, translation, or mRNA stability. Dysregulation of cAMP signaling has been proposed as a cause of bipolar disorder and PDE10A inhibitors have been investigated as potential therapeutics for schizophrenia. Understanding the mechanisms contributing to PDE10A expression in the human striatum may provide evidence linking this gene to the phenotypes observed in neuropsychiatric disorders.

Keywords: novel pde10a; gene; human striatum; pde10a transcript

Journal Title: Gene
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.