LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MiR-320a-3p/ELF3 axis regulates cell metastasis and invasion in non-small cell lung cancer via PI3K/Akt pathway.

Photo from wikipedia

MicroRNAs (miRNAs) play important roles in tumorigenesis and tumor progression. In this study, we investigated the role of miR-320a-3p in non-small cell lung cancer (NSCLC). Expressions of miR-320a-3p were firstly… Click to show full abstract

MicroRNAs (miRNAs) play important roles in tumorigenesis and tumor progression. In this study, we investigated the role of miR-320a-3p in non-small cell lung cancer (NSCLC). Expressions of miR-320a-3p were firstly determined in 80 NSCLC patients' cancer tissues and adjacent normal lung tissues by qRT-PCR. Then MTT assay, cell migration and invasion assays were performed in vitro. Potential binding sites on target gene of miR-320a-3p were predicted and luciferase reporter assay was used to identify the potential binding sites. Tumorigenesis assay were performed in nude mice by injecting A549 cells which stably express miR-320a-3p. Results indicated that high expression of miR-320a-3p suppresses cell proliferation, migration and invasion through the inactivation of PI3K/Akt signaling pathway in NSCLC cells. Smaller tumor size and lighter weight were also found in nude mice which had miR-320a-3p higher expressed. Furthermore, data from luciferase reporter assay proved the direct binding of miR-320a-3p on the 3'UTR region of ELF3 mRNA, this could further decrease ELF3 expression transcriptionally. We provided evidence that miR-320a-3p might work as a tumor suppressor in NSCLC both in vivo and in vitro.

Keywords: invasion; non small; cancer; cell; mir 320a; lung

Journal Title: Gene
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.