Previous studies have shown that miR-200a is markedly deregulated in various neurodegenerative disorders including Alzheimer's disease (AD), Multiple Sclerosis (MS) and PD. Furthermore, studies have shown the key role of… Click to show full abstract
Previous studies have shown that miR-200a is markedly deregulated in various neurodegenerative disorders including Alzheimer's disease (AD), Multiple Sclerosis (MS) and PD. Furthermore, studies have shown the key role of miR-200a on expression of SIRT1 and apoptosis. Therefore, we hypothesized that miR-200a/SIRT1 axis should have a crucial role in apoptosis of dopaminergic (DA)neurons. In this study, human SH-SY5Y cells were treated with MPP+ and expression of miR-200a, SIRT1 and its target genes were assessed. Our results confirmed that expression of miR-200a significantly up-regulated during treating of human SH-SY5Y cells with MPP+ in order to induce oxidative stress and apoptosis. Additionally, transcript level of SIRT1 in these cells showed significant down-regulation confirming that SIRT1 is indeed decreased due to miR-200a up-regulation during apoptosis. Moreover, expression of P53, FOXO1 and BCL2 were modulated. In this study, we indicated that miR-200a/SIRT1 axis directly correlates with apoptosis and P53 signaling pathway. In conclusion, miR-200a and its target gene, SIRT1, may exert a possible role in induction of apoptosis in DA neurons through regulating P53, apoptosis and FOXO signaling pathways.
               
Click one of the above tabs to view related content.