LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel compound heterozygous mutations of the DOCK6 gene in a familial case of Adams-Oliver syndrome 2.

Photo from academic.microsoft.com

INTRODUCTION Adams-Oliver syndrome (AOS) is a rare developmental disorder characterized by the combination of aplasia cutis congenita of the scalp vertex and terminal transverse limb defects. DOCK6 (Dedicator of cytokinesis… Click to show full abstract

INTRODUCTION Adams-Oliver syndrome (AOS) is a rare developmental disorder characterized by the combination of aplasia cutis congenita of the scalp vertex and terminal transverse limb defects. DOCK6 (Dedicator of cytokinesis 6) is one of the six identified AOS genes. METHODS We performed targeted next-generation sequencing (NGS) of a child with an AOS phenotype. Sanger DNA sequencing further validated her lineal consanguinity. To explore the pathological features of the mutation, a minigene assay was used to investigate the effects of the mutation on splicing. RESULTS Two compound heterozygous DOCK6 mutations (c.4106+2T>C and c.3063 C>G (p.Y1021*)) were identified in this family, and both mutations have not been reported previously. Sanger DNA sequencing indicated that the mutations were inherited maternally and paternally, respectively. The results of the minigene assay showed that the c.4106+2T>C mutation resulted in aberrant splicing and caused a four-nucleotide insertion in the transcript and a premature stop codon. CONCLUSIONS Our findings expanded the number of reported cases of this rare disease and the mutation spectrum of DOCK6 mutations, which can serve as the basis for prenatal diagnosis and genetic counseling.

Keywords: oliver syndrome; novel compound; heterozygous mutations; adams oliver; gene; compound heterozygous

Journal Title: Gene
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.