Abstract Background The pathogenesis of osteonecrosis of the femoral head (ONFH) is unclear. Our previous study demonstrated that upregulated miR-335 in bone microvascular endothelial cells (BMECs) might be associated with… Click to show full abstract
Abstract Background The pathogenesis of osteonecrosis of the femoral head (ONFH) is unclear. Our previous study demonstrated that upregulated miR-335 in bone microvascular endothelial cells (BMECs) might be associated with the disease of steroid-induced ONFH. Here, we study the preventive effect of ICA on steroid-induced ONFH in rats. Method 90 rats were separated into three groups: control group, methylprednisolone (MPS) group, and MPS + Icariin (ICA) group. Four weeks later, histological analyses were performed. Thrombomodulin (TM) and vascular endothelial growth factor (VEGF) were tested. MiRNA-335 expression was screened in the three groups using Agilent Gene Spring GX software. Target genes of miRNA-335 were detected by bioinformatics analysis. The functions of BMECs were analyzed by scratch, angiogenesis and cell survival rate. Results ICA can prevent the occurrence of steroid-associated ONFH in rats and reduce the amount of TM and VEGF in serum induced by glucocorticoids. ICA could regulate the overexpression of miRNA-335 induced by glucocorticoids. We predicted the Gene ontology (GO) and signaling pathways of target genes. At 24 hours, we found that ICA significantly promoted BMECs migration abilities. We also found that ICA could promote the angioplasty ability of BMECs. ICA could improve the survival rate of BMECs after steroid-induced injury. Conclusions ICA is effective to prevent the occurrence of steroidinduced ONFH. ICA has a protective effect against steroid-induced BMECs injury. ICA regulated the imbalance of miRNA-335 expression induced by the glucocorticoid in BMECs, which provides a new viewpoint to explore the mechanism of ICA in preventing steroid-induced ONFH.
               
Click one of the above tabs to view related content.