Hydrophobins are small, secreted proteins with important physiological functions in mycelial growth and fungal development. Here, 1 nucleus-specific and 35 allelic hydrophobin genes were identified in the genome of a… Click to show full abstract
Hydrophobins are small, secreted proteins with important physiological functions in mycelial growth and fungal development. Here, 1 nucleus-specific and 35 allelic hydrophobin genes were identified in the genome of a white rot fungus, Coriolopsis trogii. Among these, 22 were eight-cysteine class I hydrophobin genes and the other 14 were uncommon six-cysteine hydrophobin genes. The six-cysteine hydrophobins were speculated to have originated from a common ancestor. The hydrophobin genes favored a clustering distribution and two recent duplication pairs were identified. The genes had conserved gene structures with three exons and two introns. Cthyd18, Cthyd19, and Cthyd32 were constitutively highly expressed in all developmental stages. Cthyd20, Cthyd21, Cthyd22, Cthyd28, Cthyd30, Cthyd31, and Cthyd33 were highly expressed in mycelia, and Cthyd12 and Cthyd35 in the reproductive stages. Sixteen hydrophobin genes were regulated differently in the transition from mycelia to primordia; Cthyd35 showed maximal upregulation of 1922-fold, and Cthyd23 showed maximal downregulation of 552-fold. Most (32) hydrophobin genes showed significant differential expression between mycelia cultured in different media (potato dextrose agar or broth). Weighted gene co-expression network analysis and promoter analysis revealed that C2H2 zinc finger proteins may regulate hydrophobin genes. These results may support further research into the function and evolution of hydrophobins.
               
Click one of the above tabs to view related content.