LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Integrating portable X-ray fluorescence (pXRF) measurement uncertainty for accurate soil contamination mapping

Photo from wikipedia

Abstract A significant reduction in the costs associated with contamination assessments can be achieved if traditional soil sampling for contaminated-site characterization is complemented by real-time sampling using proximal soil sensors.… Click to show full abstract

Abstract A significant reduction in the costs associated with contamination assessments can be achieved if traditional soil sampling for contaminated-site characterization is complemented by real-time sampling using proximal soil sensors. Real-time sampling using a portable X-ray fluorescence (pXRF) device is a cheap and fast sampling method to provide more data and reduce the time needed to map soil contamination. The main disadvantage of using pXRF is the degree of uncertainty of these in situ measurements due to the technology’s indirect nature, and its sensitivity to soil heterogeneity and soil moisture content. This study evaluates the potential of using both pXRF and traditional soil sampling measurements to accurately map soil contamination due to the presence of heavy metals. The approach proposed uses geostatistical sequential simulation with local probability distributions to characterize and integrate pXRF uncertainty at each sampling location. The resulting maps agree with the contamination map obtained using traditional laboratory data only, in terms of mapping accuracy and extent of contaminated areas. This study shows that with few collocated pXRF and laboratory analytical data it is possible to identify contaminated areas accurately, thus providing a cost-effective solution to work with pXRF data directly.

Keywords: soil; portable ray; uncertainty; contamination; soil contamination; ray fluorescence

Journal Title: Geoderma
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.