LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Continuous and large sediment supply in a steep landslide scar, Southern Japanese Alps.

Photo by usgs from unsplash

Abstract Continuous sediment supply in the Aka-kuzure landslide scar, in the tectonically active alpine Southern Japanese Alps, was investigated using airborne light detection and ranging data in 2000, 2003, 2007… Click to show full abstract

Abstract Continuous sediment supply in the Aka-kuzure landslide scar, in the tectonically active alpine Southern Japanese Alps, was investigated using airborne light detection and ranging data in 2000, 2003, 2007 and 2012. In addition, we focused on the spatial variability of denudation patterns based on topographical analyses using DEMs. Denudation volume for the past 12 years reached about 106 m3 and mean annual denudation rate ranged from 0.25 to 0.31 m/yr. Topographical analyses revealed that sediment supply in the scar consists of a combination of two denudation types, sporadic-deep and wide-thin. These denudation types have different roles in the topographical development of the landslide scar. Sporadic-deep type supplies less volume than wide-thin type but still contributes to channel development, as it mainly occurs on lower-order streams and tends to change the convex slope into a concave slope. In contrast, although denudation depth of the wide-thin type is thin, the area affected by this type extends to the whole landslide scar. Consequently, the wide-thin type accounts for most of the total volume lost, for which detachment by frost shattering is suggested as an important role.

Keywords: denudation; sediment supply; scar; landslide scar

Journal Title: Geomorphology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.