LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Four-dimensional pseudo-Riemannian g.o. spaces and manifolds

Photo by mhue723 from unsplash

Abstract A g.o. manifold is a homogeneous pseudo-Riemannian manifold whose geodesics are all homogeneous, that is, they are orbits of a one-parameter group of isometries. A g.o. space is a… Click to show full abstract

Abstract A g.o. manifold is a homogeneous pseudo-Riemannian manifold whose geodesics are all homogeneous, that is, they are orbits of a one-parameter group of isometries. A g.o. space is a realization of a homogeneous pseudo-Riemannian manifold ( M , g ) as a coset space M = G ∕ H , such that all the geodesics are homogeneous. We prove that apart from the already classified non-reductive examples (Calvaruso et al., 2015), any four-dimensional pseudo-Riemannian g.o. manifold is naturally reductive. To obtain this result, we shall also provide a complete description up to isometries of four-dimensional pseudo-Riemannian g.o. spaces, and show explicit realizations of the four-dimensional pseudo-Riemannian naturally reductive spaces classified in Batat et al. (2015).

Keywords: pseudo; dimensional pseudo; riemannian spaces; four dimensional; pseudo riemannian; riemannian manifold

Journal Title: Journal of Geometry and Physics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.