We construct KMS-states from Li1-summable semifinite spectral triples and show that in several important examples the construction coincides with well-known direct constructions of KMS-states for naturally defined flows. Under further… Click to show full abstract
We construct KMS-states from Li1-summable semifinite spectral triples and show that in several important examples the construction coincides with well-known direct constructions of KMS-states for naturally defined flows. Under further summability assumptions the constructed KMS-state can be computed in terms of Dixmier traces. For closed manifolds, we recover the ordinary Lebesgue integral. For Cuntz–Pimsner algebras with their gauge flow, the construction produces KMS-states from traces on the coefficient algebra and recovers the Laca–Neshveyev correspondence. For a discrete group acting on its Stone–Cech boundary, we recover the Patterson–Sullivan measures on the Stone-Cech boundary for a flow defined from the Radon–Nikodym cocycle.
               
Click one of the above tabs to view related content.