LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Soil CO2 flux and temperature from a new geothermal area in the Cordón de Inacaliri Volcanic Complex (northern Chile)

Photo from wikipedia

Abstract This paper deals with the first geochemical data from an unexplored sector of the Cordon de Inacaliri Volcanic Complex (Central Andes, Chile). The site is located at ∼5,150-5,200 m a.s.l.,… Click to show full abstract

Abstract This paper deals with the first geochemical data from an unexplored sector of the Cordon de Inacaliri Volcanic Complex (Central Andes, Chile). The site is located at ∼5,150-5,200 m a.s.l., inside the Pabelloncito graben where, at about 9 km NW of the studied area, the only currently working geothermal power plant of South America, named Cerro Pabellon, occurs. Diffuse soil CO2 and soil temperature measurements were carried out to unravel the structural control on the rising fluids and estimate the total CO2 output, the heat flow rate and the heat flux, aimed at assessing a preliminary evaluation of the geothermal potential of the area. The study area is characterized by a pervasive hydrothermal mineralogical alteration, CO2 flux values of up to ∼4,400 g m-2 d-1 and soil temperatures up to the boiling point of water at that altitude. All these features are likely related to an endogenous source. Spatial distribution of both soil CO2 flux and temperature depict an ENE-striking lineament, whose intersection with the NW-striking Pabelloncito graben forms a favourable structural setting for the discharge of hydrothermal fluids. The total CO2 output emission of the studied area (∼0.0179 km2) was ∼0.53 t d-1, with an associated discharge of steam of 6.45 t d-1 (CO2/H2O ratio = 0.08). An electric capacity potential of 1.08 MWe km-2 was computed from the heat flow rate and heat flux values. Our results suggest that this part of the Pabelloncito graben is an interesting geothermal prospect and a good candidate for further exploration studies.

Keywords: co2; area; co2 flux; soil co2; temperature

Journal Title: Geothermics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.