LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generation of a potassic to ultrapotassic alkaline complex in a syn-collisional setting through flat subduction: Constraints on magma sources and processes (Otjimbingwe alkaline complex, Damara orogen, Namibia)

Photo by roberto_sorin from unsplash

Abstract The ~545 Ma-old syn-collisional Otjimbingwe alkaline complex is composed of pyroxene-amphibole-biotite-bearing, mildly nepheline-normative to quartz-normative rocks ranging in composition from monzogabbro to monzonite, syenite and granite. The alkaline rocks have… Click to show full abstract

Abstract The ~545 Ma-old syn-collisional Otjimbingwe alkaline complex is composed of pyroxene-amphibole-biotite-bearing, mildly nepheline-normative to quartz-normative rocks ranging in composition from monzogabbro to monzonite, syenite and granite. The alkaline rocks have moderate to high SiO2 (50.5–73.0 wt%) and Na2O + K2O (5.1–11.5 wt%) and moderate to low MgO (6.6–0.2 wt%) concentrations. All samples have high large ion lithophile element (LILE: Ba up to 4600 ppm) and high-field-strength element contents (HFSE; Zr: 155–1328 ppm; Nb: 16–110 ppm; Ta: 1.4–7.1 ppm and Hf: 4–24 ppm) and have strongly fractionated LREE patterns ((La/Yb)N = 14–51). The most primitive members lack significant negative Eu anomalies. Mantle-normalized multi-element diagrams show depletion in Ba, Rb, Nb (Ta), P and Ti. The alkaline rocks have moderate radiogenic initial 87Sr/86Sr ratios (0.7061–0.7087) and unradiogenic initial ɛNd values (−3.9 to −6.1). This isotope signature, associated with high LREE/HFSE ratios indicates that the parental melts were generated in enriched portions of the shallow lithospheric mantle, which was probably affected by previous subduction zone processes. In addition, correlations between Sr and Nd isotopes indicate that some of these variations result from combined crustal assimilation and fractional crystallization (AFC) processes. A new model of flat subduction is presented that explains most of the unsolved problems in the orogenic evolution of the Damara orogen, namely (i) the absence of early intrusive rocks with a clear subduction zone setting, (ii) the absence of high-pressure rocks such as blueschists and eclogites, (iii) the unusual distribution of igneous rocks with a clear predominance of granite and granodiorite and (iv) the need for a asthenospheric window during a classical subduction to explain the high T/moderate P granulite facies conditions in the overriding plate.

Keywords: otjimbingwe alkaline; subduction; alkaline; syn collisional; alkaline complex; ppm

Journal Title: Gondwana Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.