LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biological stoichiometry and growth dynamics of a diazotrophic cyanobacteria in nitrogen sufficient and deficient conditions.

Photo from wikipedia

The role of nitrogen (N) fixation in determining the frequency, magnitude, and extent of harmful algal blooms (HABs) has not been well studied. Dolichospermum is a common HAB species that… Click to show full abstract

The role of nitrogen (N) fixation in determining the frequency, magnitude, and extent of harmful algal blooms (HABs) has not been well studied. Dolichospermum is a common HAB species that is diazotrophic (capable of N fixation) and thus growth is often considered never to be limited by low combined N sources. However, N fixation is energetically expensive and its cost during bloom formation has not been quantified. Additionally, it is unknown how acclimation to differing nutrient ratios affects growth and cellular carbon (C):N stoichiometry. Here, we test the hypotheses that diazotrophic cyanobacteria are homeostatic for N because of their ability to fix atmospheric N2 and that previous acclimation to low N environments will result in more fixed N and lower C:N stoichiometry. Briefly, cultures that varied in resource N:phosphorus (P) ranging from 0.01 to 100 (atom), were seeded with Dolichospermum which were previously acclimated to low and high N:P conditions and then sampled temporally for growth and C:N stoichiometry. We found that Dolichospermum was not homeostatic for N and displayed classic signs of N limitation and elevated C:N stoichiometry, highlighting the necessary growth trade-off within cells when expending energy to fix N. Acclimation to N limited conditions caused differences in both C:N and fixed N at various time points in the experiment. These results highlight the importance of environmentally available N to a diazotrophic bloom, as well as how previous growth conditions can influence population growth during blooms experiencing variable N:P.

Keywords: stoichiometry growth; growth; diazotrophic cyanobacteria; biological stoichiometry; growth dynamics; stoichiometry

Journal Title: Harmful algae
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.