LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Binaural unmasking of the accuracy of envelope-signal representation in rat auditory cortex but not auditory midbrain

Photo by onesmallsquare from unsplash

Accurate neural representations of acoustic signals under noisy conditions are critical for animals' survival. Detecting signal against background noise can be improved by binaural hearing particularly when an interaural-time-difference (ITD)… Click to show full abstract

Accurate neural representations of acoustic signals under noisy conditions are critical for animals' survival. Detecting signal against background noise can be improved by binaural hearing particularly when an interaural-time-difference (ITD) disparity is introduced between the signal and the noise, a phenomenon known as binaural unmasking. Previous studies have mainly focused on the binaural unmasking effect on response magnitudes, and it is not clear whether binaural unmasking affects the accuracy of central representations of target acoustic signals and the relative contributions of different central auditory structures to this accuracy. Frequency following responses (FFRs), which are sustained phase-locked neural activities, can be used for measuring the accuracy of the representation of signals. Using intracranial recordings of local field potentials, this study aimed to assess whether the binaural unmasking effects include an improvement of the accuracy of neural representations of sound-envelope signals in the rat IC and/or auditory cortex (AC). The results showed that (1) when a narrow-band noise was presented binaurally, the stimulus-response (S-R) coherence of the FFRs to the envelope (FFRenvelope) of the narrow-band noise recorded in the IC was higher than that recorded in the AC. (2) Presenting a broad-band masking noise caused a larger reduction of the S-R coherence for FFRenvelope in the IC than that in the AC. (3) Introducing an ITD disparity between the narrow-band signal noise and the broad-band masking noise did not affect the IC S-R coherence, but enhanced both the AC S-R coherence and the coherence between the IC FFRenvelope and AC FFRenvelope. Thus, although the accuracy of representing envelope signals in the AC is lower than that in the IC, it can be binaurally unmasked, indicating a binaural-unmasking mechanism that is formed during the signal transmission from the IC to the AC.

Keywords: coherence; binaural unmasking; rat auditory; accuracy; noise

Journal Title: Hearing Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.