LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The delivery of mRNA to colon inflammatory lesions by lipid-nano-particles containing environmentally-sensitive lipid-like materials with oleic acid scaffolds

Photo by sharonmccutcheon from unsplash

An mRNA gene therapy represents a potentially promising therapeutic for curing inflammatory diseases. The transient nature of the gene expression of mRNA would be expected to be beneficial for avoiding… Click to show full abstract

An mRNA gene therapy represents a potentially promising therapeutic for curing inflammatory diseases. The transient nature of the gene expression of mRNA would be expected to be beneficial for avoiding undesired side effects. Since the mRNA is a vulnerable molecule, a development of a carrier that can deliver the mRNA to the cytoplasm has a high priority. We report herein on the development of a system for delivering mRNA to the inflammatory lesion in a dextran sulfate sodium (DSS)-induced colitis model. We modulated molecular structures of an ionizable lipid, an SS-cleavable and pH-activated lipid-like material (ssPalm). Among the fatty acids investigated, oleic acid scaffolds (ssPalmO) appeared to be more biocompatible than either myristic acid or linoleic acid scaffolds with the colitis model. The structural modification of the hydrophilic head groups from linear tertiary amines to piperazine rings (ssPalmO-Paz4-C2) resulted in a more than 10-fold higher increasing in the transgene activity in inflammatory colon. The most notable observation is that the transgene activity in the inflammatory colon is significantly higher than that in liver, the major clearance organ of lipid nanoparticles. Collectively, the ssPalmO-Paz4-C2 represents a promising material for the delivery of an mRNA to inflammatory lesions.

Keywords: acid scaffolds; delivery mrna; oleic acid; colon; lipid like; mrna

Journal Title: Heliyon
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.