LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigations on the enhanced dye degradation activity of heterogeneous BiFeO3–GdFeO3 nanocomposite photocatalyst

Perovskite types of nanocomposites of BiFeO3–GdFeO3 (BFO-GFO) has been synthesized using sol-gel route for the first time. The nanocomposite powders were characterized by powder X-Ray diffraction (PXRD) to confirm the… Click to show full abstract

Perovskite types of nanocomposites of BiFeO3–GdFeO3 (BFO-GFO) has been synthesized using sol-gel route for the first time. The nanocomposite powders were characterized by powder X-Ray diffraction (PXRD) to confirm the existence of mixed crystallographic phases. EDX analysis on nanocomposites estimates the composition of individual element present in BFO-GFO matrix. The induced strain upon loading GdFeO3(GFO) in BiFeO3 (BFO) matrix has been computed with the aid of Williamson –Hall (W–H) plot. Surface morphologies of nanocomposite powders has been studied using Field Emission Scanning Electron Microscope (FESEM) images. The observed changes in the band gap energies of nanocomposite powders due to the inclusion of GFO has been ascertained from the tauc plots. PL emission of BFO upon loading GFO found to have detected in the IR region due to defect level transition. Finally, the methylene blue dye (MB) degradation characteristics of BFO, GFO and the nanocomposite powders of BFO-GFO have also been studied. The overall results obtained has been discussed in detail.

Keywords: nanocomposite powders; bifeo3 gdfeo3; gfo; bfo gfo; dye degradation

Journal Title: Heliyon
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.