LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

RNAi-mediated knockdown of VDR surprisingly suppresses cell growth in Jurkat T and U87-MG cells

Photo from wikipedia

Vitamin D receptor (VDR) is a nuclear receptor for 1,25-Dihydroxyvitamin D3. VDR is expressed in many types of cells and involved in different biological processes such as immunity and inflammation.… Click to show full abstract

Vitamin D receptor (VDR) is a nuclear receptor for 1,25-Dihydroxyvitamin D3. VDR is expressed in many types of cells and involved in different biological processes such as immunity and inflammation. In addition, the role for VDR has been indicated in different diseases including multiple sclerosis (MS). In this study, we investigated the effects of VDR knockdown on growth, apoptosis, cell cycle, and some inflammatory gene expressions in Jurkat and U87-MG cell lines. The cell lines were transfected with plasmids encoding short hairpin RNA specific to VDR mRNA. Next, growth, apoptosis, and cell cycle were evaluated using MTT assay and annexin VDR along with flowcytometry. Then the mRNA expression of some genes was determined by real-time PCR at 24 h and 48 h after transfection. The cell growth and apoptosis of VDR-shRNA transfected Jurkat T cells and U87-MG cells were surprisingly changed compared with those in control cells. The expression of IL-10, NF-KB, TGF-β1, TGF-β R I, and TGF-β R II in two cell lines transfected with VDR-shRNA was significantly changed compared to control cells. VDR showed a new unexpected function to control cell growth in vitro. In addition, while VDR knocking down in two different cell lines of U87-MG and Jurkat cells had different effects on NF-kB and TGF-beta expression levels, its effects on cell growth and apoptosis were similar. This may suggest that these two different cell lines can show similar anti-proliferative effects by different downstream signalling pathways. Therefore, these data may be useful to design novel diagnostic and therapeutic methods for diseases such as MS.

Keywords: vdr; cell lines; cell growth; jurkat; cell

Journal Title: Heliyon
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.