LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Measurements of radiocesium in animals, plants and fungi in Svalbard after the Fukushima Daiichi nuclear power plant disaster

Photo from wikipedia

An earthquake struck the eastern part of Japan on March 11, 2011. The Fukushima Daiichi nuclear power plant was severely damaged by the earthquake and subsequent tsunami, leading to the… Click to show full abstract

An earthquake struck the eastern part of Japan on March 11, 2011. The Fukushima Daiichi nuclear power plant was severely damaged by the earthquake and subsequent tsunami, leading to the emission of large amounts of radioactive pollutants, including 134Cs and 137Cs, into the environment. From August 23 to September 1 in 2011, and from August 27 to September 4 in 2013, we collected samples of animals, plants, fungi and lichens from Svalbard, Norway and measured the radioactivity of 134Cs and 137Cs contained in the samples. Though no radioactivity of 134Cs, which has a half-life of approximately 2 years, was observed, radioactivity of 137Cs, which has a half-life of approximately 30 years, was observed in some samples of lichens and fungi. We failed to detect the radioactivity of 134Cs in any of the samples we collected, therefore, it was impossible to say clearly that the radioactivity is derived from Fukushima or not. Nevertheless, the radioactivity data documented in this report are a useful reference for the future surveys of radioactivity within the Arctic.

Keywords: nuclear power; power plant; daiichi nuclear; animals plants; radioactivity; fukushima daiichi

Journal Title: Heliyon
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.