LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular dynamics simulations of copper binding to amyloid-β Glu22 mutants

Photo from wikipedia

We report microsecond timescale ligand field molecular dynamics simulations of the copper complexes of three known mutants of the amyloid-β peptide, E22G, E22Q and E22K, alongside the naturally occurring sequence.… Click to show full abstract

We report microsecond timescale ligand field molecular dynamics simulations of the copper complexes of three known mutants of the amyloid-β peptide, E22G, E22Q and E22K, alongside the naturally occurring sequence. We find that all three mutants lead to formation of less compact structures than the wild-type: E22Q is the most similar to the native peptide, while E22G and especially E22K are markedly different in size, shape and stability. Turn and coil structures dominate all structures studied but subtle differences in helical and β-sheet distribution are noted, especially in the C-terminal region. The origin of these changes is traced to disruption of key salt bridges: in particular, the Asp23-Lys28 bridge that is prevalent in the wild-type is absent in E22G and E22K, while Lys22 in the latter mutant forms a strong association with Asp23. We surmise that the drastically different pattern of salt bridges in the mutants lead to adoption of a different structural ensemble of the peptide backbone, and speculate that this might affect the ability of the mutant peptides to aggregate in the same manner as known for the wild-type.

Keywords: copper binding; molecular dynamics; simulations copper; binding amyloid; dynamics simulations; wild type

Journal Title: Heliyon
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.