LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A multi-branch separable convolution neural network for pedestrian attribute recognition

Photo from wikipedia

Video surveillance applications have made great strides in making the world a safer place. Extracting visual attributes from a scene, such as the type of shoes, the type of clothing,… Click to show full abstract

Video surveillance applications have made great strides in making the world a safer place. Extracting visual attributes from a scene, such as the type of shoes, the type of clothing, carrying any object or not, or wearing any accessory etc., is a challenging problem and an efficient solution holds the key to a great number of applications. In this paper, we present a multi-branch convolutional neural network that uses depthwise separable convolution (DSC) layers to solve the pedestrian attribute recognition problem. Researchers have proposed various solutions over the years making use of convolutional neural networks (CNN), however, we introduce DSC layers to the CNN for the problem of pedestrian attribute recognition. In addition, we make a novel use of the different color spaces and create a 3-branch CNN, denoted as 3bCNN, that is efficient, especially with smaller datasets. We experiment on two benchmark datasets and show results with improvement over the state of the art.

Keywords: attribute recognition; pedestrian attribute; neural network; multi branch

Journal Title: Heliyon
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.