A new fluorescent chemosensor based on quinoxaline was successfully synthesized through a facile and green catalytic reaction of ortho-phenylenediamine (O-PDA) and acenaphthylene-1,2-dione in the presence of SBA-Pr-SO3H. Prepared a “switch-off”… Click to show full abstract
A new fluorescent chemosensor based on quinoxaline was successfully synthesized through a facile and green catalytic reaction of ortho-phenylenediamine (O-PDA) and acenaphthylene-1,2-dione in the presence of SBA-Pr-SO3H. Prepared a “switch-off” quinoxaline-based receptor to recognized Hg2+ ion in high selectively and, without any interference from other metal ions, was developed. The photophysical behavior of this fluorophore was studied in acetonitrile by using fluorescence spectra. The fluorescence properties of several cations to acenaphtoquinoxaline were investigated in acetonitrile, and the competition test displayed that the probe fluorescence changes were specific for Hg2+ ion. The obtained results have shown high selectivity and sensitivity only for Hg2+. Also, the detection limit was as low as 42 ppb, and a top linear trend was observed between the concentration of Hg2+ ions and fluorescence intensity. The binding stoichiometry between chemosensor L and Hg2+ was found to be 1:1. Moreover, a computational study was performed to obtain an electronic description of the fluorescence emission and quenching mechanisms. The optimized structures and binding mechanisms were supported with a high correlation and agreement by spectroscopy and DFT calculations.
               
Click one of the above tabs to view related content.