LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and biological properties of a series of aryl alkyl disulfide derivatives

Photo from wikipedia

Disulfide containing compounds are recognized for their wide range of biological properties and are known for their important applications in the pharmaceutical field. In this study, a series of diaryl… Click to show full abstract

Disulfide containing compounds are recognized for their wide range of biological properties and are known for their important applications in the pharmaceutical field. In this study, a series of diaryl disulfides with varying alkyl chain length (C8-C16) was synthesized and assessed for their physicochemical and biological properties. The interactions of compounds with bovine serum albumin (BSA) was investigated in order to study their ability to bind with blood serum protein. An increase in the binding constants (Ka) was observed with increasing chain length C8-C12, while a decrease in value was obtained with compounds of chain length C14 and C16 showing a cut off effect at C12. The thermodynamic parameters of binding indicated that the compounds bound to BSA mostly by van der Waals forces and hydrogen bonding. Molecular docking studies showed that the diaryl disulfides displayed greater binding affinity to Trp 213 rather than the Trp 134 residue on the BSA molecule. The trend observed in molecular docking is in line with the fluorescence binding studies whereby the C12 derivative was found to show optimum affinity with BSA. The disulfide with chain length C10 showed moderate antibacterial activity the highest inhibitory activity against Bacillus cereus. The cytotoxicity of the disulfides towards HaCaT cells decreased from C8 to C14. The overall results obtained show that these disulfides have potent antibacterial properties against Gram-positive bacteria Bacillus cereus at concentrations which are relatively non-toxic to normal cells.

Keywords: chain length; biological properties; disulfide; series

Journal Title: Heliyon
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.