LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of multiple doses of N-methyl-N-nitrosourea, an end product of methylguanidine (found in processed food), on the fertility of female Swiss albino mice

Photo by nathan030997 from unsplash

Methylguanidine, an originator of carcinogenic methylnitrosourea, has been found in many animal meats and processed stored food often in high concentration. The present study was designed to understand the multiple… Click to show full abstract

Methylguanidine, an originator of carcinogenic methylnitrosourea, has been found in many animal meats and processed stored food often in high concentration. The present study was designed to understand the multiple dose effect of N-methyl-N-nitrosourea (MNU), an end product of methylguanidine, in Swiss albino mice fertility as well as cancer induction. Accordingly, a total of five experimental groups of animal (female Swiss albino mice) were taken, considering group-I as vehicle control and group-II-V as treatment groups (whereas group-II-Vwere treated with single to quadruple doses of 50 mg/kg of MNU respectively in a three weeks interval). After accomplishment of MNU injection, each female mice was mated with male mice to check the fertility efficiency. The results of the study indicated that, mice treated with highest number of MNU doses were 42.85% less efficient in getting pregnant than the control mice. There were noted changes in body weight, food and water intake upon MNU-exposure compared to control group. A significant increase in cumulative weight of vital female organs like uterus and ovary were also observed in mice injected with quadruple doses of MNU (50 mg/kg) compared to control mice. The findings of the study suggest the direct effect of MNU in pregnancy, without any cancer incidence in the vital female organs of Swiss albino mice.

Keywords: albino mice; methylguanidine; swiss albino; mice; food

Journal Title: Heliyon
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.