LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Calcitriol (1,25-dihydroxyvitamin D3) increases L-type calcium current via protein kinase A signaling and modulates calcium cycling and contractility in isolated mouse ventricular myocytes.

Photo by stayandroam from unsplash

BACKGROUND Calcitriol, the bioactive metabolite of vitamin D, exerts its effects through interaction with the nuclear vitamin D receptor (VDR) to induce genomic responses. Calcitriol may also induce rapid responses… Click to show full abstract

BACKGROUND Calcitriol, the bioactive metabolite of vitamin D, exerts its effects through interaction with the nuclear vitamin D receptor (VDR) to induce genomic responses. Calcitriol may also induce rapid responses via plasma membrane-associated VDR, involving the activation of second messengers and modulation of voltage-dependent channels. VDR is expressed in cardiomyocytes, but the molecular and cellular mechanisms involved in the rapid responses of calcitriol in the heart are poorly understood. OBJECTIVE The aim of the present study was to analyze the rapid nongenomic effect of calcitriol on L-type calcium channels, intracellular Ca2+ ([Ca2+]i) transients, and cell contractility in ventricular myocytes. METHODS We used the whole-cell patch-clamp technique to record L-type calcium current (ICaL) and confocal microscopy to study global [Ca2+]i transients evoked by electrical stimulation and cell shortening in adult mouse ventricular myocytes treated with vehicle or with calcitriol. In some experiments, ICaL was recorded using the perforated patch-clamp technique. RESULTS Calcitriol treatment of cardiomyocytes induced a concentration-dependent increase in ICaL density (Half maximal effective concentration (EC50) = 0.23 nM) and a significant increase in peak [Ca2+]i transients and cell contraction. The effect of calcitriol on ICaL was prevented by pretreatment of cardiomyocytes with the protein kinase A (PKA) inhibitor KT-5720 but not with the β-adrenergic blocker propranolol. The effect of calcitriol on ICaL was absent in myocytes isolated from VDR knockout mice. CONCLUSION Calcitriol induces a rapid response in mouse ventricular myocytes that involves a VDR-PKA-dependent increase in ICaL density, enhancing [Ca2+]i transients and contraction.

Keywords: ca2 transients; type calcium; mouse ventricular; calcitriol; ventricular myocytes

Journal Title: Heart rhythm
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.