LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antiarrhythmic effects of vagal nerve stimulation after cardiac sympathetic denervation in the setting of chronic myocardial infarction.

Photo by justinkra from unsplash

BACKGROUND Neuraxial modulation with cardiac sympathetic denervation (CSD) can potentially reduce burden of ventricular tachyarrhythmia (VT). However, despite catheter ablation and CSD, VT can recur in patients with cardiomyopathy and… Click to show full abstract

BACKGROUND Neuraxial modulation with cardiac sympathetic denervation (CSD) can potentially reduce burden of ventricular tachyarrhythmia (VT). However, despite catheter ablation and CSD, VT can recur in patients with cardiomyopathy and the role of vagal nerve stimulation (VNS) in this setting is unclear. OBJECTIVE The purpose of this study was to evaluate the electrophysiological effects of VNS after CSD in normal and infarcted hearts. METHODS In 10 normal and 6 infarcted pigs, electrophysiological and hemodynamic parameters were evaluated before and during intermittent VNS pre-CSD (bilateral stellectomy and T2-T4 thoracic ganglia removal) as well as post-CSD. The effect of VNS during isoproterenol was also assessed pre- and post-CSD. Multielectrode ventricular activation recovery interval (ARI) recordings, a surrogate of action potential duration, were obtained. VT inducibility was tested during isoproterenol infusion after CSD with and without VNS. RESULTS VNS increased the global ARI by 4% ± 4% pre-CSD and by 5% ± 6% post-CSD, with enhanced effects observed during isoproterenol infusion (10% ± 8% pre-CSD and 12% ± 9% post-CSD) in normal animals. In infarcted animals pre-CSD, VNS increased ARI by 6% ± 7% before and by 13% ± 8% during isoproterenol infusion. Post-CSD, VNS increased ARI by 6% ± 5% before and by 11% ± 7% during isoproterenol infusion. VT was inducible in all infarcted animals post-CSD during isoproterenol infusion; this inducibility was reduced by 67% with VNS (P = .01). In all animals, the hemodynamic effects of VNS remained after CSD. CONCLUSION After CSD, the beneficial electrophysiological effects of VNS remain. Furthermore, VNS can reduce VT inducibility beyond CSD in the setting of circulating catecholamines, suggesting a role for additional parasympathetic modulation in the treatment of ventricular arrhythmias.

Keywords: cardiac sympathetic; isoproterenol infusion; csd; post csd; sympathetic denervation

Journal Title: Heart rhythm
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.