LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Amine-binding properties of salivary yellow-related proteins in phlebotomine sand flies.

Photo from wikipedia

The amine-binding properties of sand fly salivary yellow-related proteins (YRPs) were described only in Lutzomyia longipalpis sand flies. Here, we experimentally confirmed the kratagonist function of YRPs in the genus… Click to show full abstract

The amine-binding properties of sand fly salivary yellow-related proteins (YRPs) were described only in Lutzomyia longipalpis sand flies. Here, we experimentally confirmed the kratagonist function of YRPs in the genus Phlebotomus. We utilized microscale thermophoresis technique to determine the amine-binding properties of YRPs in saliva of Phlebotomus perniciosus and P. orientalis, the Old-World vectors of visceral leishmaniases causative agents. Expressed and purified YRPs from three different sand fly species were tested for their interactions with various biogenic amines, including serotonin, histamine and catecholamines. Using the L. longipalpis YRP LJM11 as a control, we have demonstrated the comparability of the microscale thermophoresis method with conventional isothermal titration calorimetry described previously. By homology in silico modeling, we predicted the surface charge and both amino acids and hydrogen bonds of the amine-binding motifs to influence the binding affinities between closely related YRPs. All YRPs tested bound at least two biogenic amines, while the affinities differ both among and within species. Low affinity was observed for histamine. The salivary recombinant proteins rSP03B (P. perniciosus) and rPorASP4 (P. orientalis) showed high-affinity binding of serotonin, suggesting their capability to facilitate inhibition of the blood vessel contraction and platelet aggregation.

Keywords: sand; amine binding; related proteins; salivary yellow; binding properties; yellow related

Journal Title: Insect biochemistry and molecular biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.