Insecticides are a key tool in the management of many insect pests of agriculture, including soybean aphids. The selection imposed by insecticide use has often lead to the evolution of… Click to show full abstract
Insecticides are a key tool in the management of many insect pests of agriculture, including soybean aphids. The selection imposed by insecticide use has often lead to the evolution of resistance by the target pest through enhanced detoxification mechanisms. We hypothesised that exposure of insecticide-susceptible aphids to sublethal doses of insecticides would result in the up-regulation of genes involved in detoxification of insecticides, revealing the genes upon which selection might act in the field. We used the soybean aphid biotype 1 reference genome, version 6.0 as a reference to analyze RNA-Seq data. We identified multiple genes with potential detoxification roles that were up-regulated 12 hours after sublethal exposure to esfenvalerate or thiamethoxam. However, these genes were part of a dramatic burst of differential gene expression in which thousands of genes were up- or down-regulated, rather than a defined response to insecticides. Interestingly, the transcriptional burst observed at 12hrs declined dramatically by 24-hrs post-exposure, suggesting a general stress response that may become fine-tuned over time.
               
Click one of the above tabs to view related content.