Abstract Density functional theory (DFT) and coupled-cluster (CCSD(T)) theory have been applied to investigate the geometric, growth pattern, bonding, stability, dissociation, adsorption and electronic properties of arsenide doped boron clusters… Click to show full abstract
Abstract Density functional theory (DFT) and coupled-cluster (CCSD(T)) theory have been applied to investigate the geometric, growth pattern, bonding, stability, dissociation, adsorption and electronic properties of arsenide doped boron clusters BnAs (n = 1–9). Vertical ionization potential (VIP), vertical electron affinity (VEA), HOMO-LUMO energy gap (Eg), binding energy (Eb), chemical hardness (η), and radial distribution functions (RDFs) of B-As and B-B interactions have also been investigated and discussed for the most stable isomers. The results show that the As-dopant atom prefers to locate in peripheral regions for the studied sizes. Arsenic atom can obviously enhance the stability of BnAs clusters.
               
Click one of the above tabs to view related content.