Abstract Reaction of 1,4-diazabutadiene (p-RC6H4N = C(H)(H)C = NC6H4R-p; R = OCH3, CH3, H and Cl; abbreviated as L-R) with CuCl2·2H2O in methanol at ambient temperature (25 °C) affords a group of doubly chloro-bridged dicopper complexes of… Click to show full abstract
Abstract Reaction of 1,4-diazabutadiene (p-RC6H4N = C(H)(H)C = NC6H4R-p; R = OCH3, CH3, H and Cl; abbreviated as L-R) with CuCl2·2H2O in methanol at ambient temperature (25 °C) affords a group of doubly chloro-bridged dicopper complexes of type [{CuI(L-R)Cl}2], designated as 1-R. Similar reaction carried out in acetonitrile furnishes a family of doubly chloro-bridged dicopper complexes of type [{CuII(L-R)Cl2}2], designated as 2-R. Molecular structures of 1-OCH3 and 2-OCH3 have been determined by X-ray crystallography. While copper(I) is having a nearly tetrahedral N2Cl2 coordination sphere in 1-OCH3, the N2Cl3 coordination sphere around copper(II) is distorted square pyramidal in nature in 2-OCH3. Isolated 2-R complexes, on dissolution in methanol, are found to undergo facile reduction of the metal center to generate the corresponding 1-R complexes. The 1-R and 2-R complexes show intense absorptions in the visible and ultraviolet regions. Cyclic voltammetry on the 1-R and 2-R complexes shows both metal-centered and ligand centered redox responses. The 1-R complexes are found to efficiently catalyze C-N cross-coupling reactions between arylboronic acids and aryl amines; while the 2-R complexes display notable catalytic efficiency for nitroaldol reactions.
               
Click one of the above tabs to view related content.