LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Breaking up is hard to do: Global cartography and topography of Pluto's mid-sized icy Moon Charon from New Horizons

Photo by robertbye from unsplash

Abstract The 2015 New Horizons flyby through the Pluto system produced the first high-resolution topographic maps of Pluto and Charon, the most distant objects so mapped. Global integrated mosaics of… Click to show full abstract

Abstract The 2015 New Horizons flyby through the Pluto system produced the first high-resolution topographic maps of Pluto and Charon, the most distant objects so mapped. Global integrated mosaics of the illuminated surface of Pluto's large icy moon Charon have been produced using both framing camera and line scan camera data (including four-color images at up to 1.47 km pixel scales), showing the best resolution data at all areas of the surface. Digital elevation models (DEMs) with vertical precisions of up to ∼0.1 km were constructed for ∼40% of Charon using stereo imagery. Local radii estimates for the surface were also determined from the cartographic control network solution for the LORRI framing camera data, which validate the stereo solutions. Charon is moderately cratered, the largest of which is ∼250-km across and ∼6 km deep. Charon has a topographic range over the observed hemisphere from lowest to highest of ∼19 km, the largest topographic amplitude of any mid-sized icy body (including Ceres) other than Iapetus. Unlike Saturn's icy moons whose topographic signature is dominated by global relaxation of topography and subsequent impact cratering, large-scale tectonics and regional resurfacing dominate Charon's topography. Most of Charon's encounter hemisphere north of the equator (Oz Terra) is broken into large polygonal blocks by a network of wide troughs with typically 3–6 km relief; the deepest of these occur near the illuminated pole and are up to 13 km deep with respect to the global mean radius, the deepest known surfaces on Charon. The edge of this terrain is defined by large tilted blocks sloping ∼5° or so, the crests of which rise to 5 or 6 km above Charon mean, the highest known points on Charon. The southern resurfaced plains, Vulcan Planitia, consist of rolling plains, locally fractured and pitted, that are depressed ∼1 km below the mean elevation of the disrupted northern terrains of Oz Terra that comprise much of the northern hemisphere (but ∼2–2.5 km below the surfaces of the blocks themselves). These plains roll downward gently to the south with a topographic range of ∼5 km. The outer margins of Vulcan Planitia along the boundary with Oz Terra form a 2-3-km-deep trough, suggesting viscous flow along the outer margins. Isolated massifs 2–4 km high, also flanked by annular moats, lie within the planitia itself. The plains may be formed from volcanic resurfacing of cryogenic fluids, but the tilted blocks along the outer margins and the isolated and tilted massifs within Vulcan Planitia also suggest that much of Charon has been broken into large blocks, some of which have been rotated and some of which have foundered into Charon's upper “mantle”, now exposed as Vulcan Planitia, a history that may be most similar to the disrupted terrains of Ariel.

Keywords: topography; new horizons; cartography; pluto; charon; icy

Journal Title: Icarus
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.