LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic and isotopic evolution of ice reservoirs on Mars

Photo from archive.org

Abstract The layered polar caps of Mars have long been thought to be related to variations in orbit and axial tilt. We dynamically link Mars's past climate variations with the… Click to show full abstract

Abstract The layered polar caps of Mars have long been thought to be related to variations in orbit and axial tilt. We dynamically link Mars's past climate variations with the stratigraphy and isotopic composition of its ice by modeling the exchange of H2O and HDO among three reservoirs. The model shows that the interplay among equatorial, mid-latitude, and north-polar layered deposits (NPLD) induces significant isotopic changes in the cap. The diffusive properties of the sublimation lags and dust content in our model result in a cap size consistent with current Mars. The layer thicknesses are mostly controlled by obliquity variations, but the precession period of 50 kyr dominates the variations in the isotopic composition during epochs of relatively low and nearly constant obliquity such as at present. Isotopic sampling of the top 100 m may reveal climate oscillations unseen in the layer thicknesses and would thus probe recent precession-driven climate cycles.

Keywords: dynamic isotopic; isotopic evolution; evolution ice; reservoirs mars; ice reservoirs; ice

Journal Title: Icarus
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.