Abstract The feasibility of using Fourier transform infrared spectroscopy (FTIR) to detect heat induced conformational rearrangements of proteins, protein–protein and protein–lipid interactions was studied with accelerated shelf-life protocols. Ultra-high temperature… Click to show full abstract
Abstract The feasibility of using Fourier transform infrared spectroscopy (FTIR) to detect heat induced conformational rearrangements of proteins, protein–protein and protein–lipid interactions was studied with accelerated shelf-life protocols. Ultra-high temperature treated whole (WM) and skim milk (SM) were stored at 20, 30, 40 and 50 °C for 28 days. The changes leading to increased sedimentation in SM and WM at higher temperatures (≥40 °C) were observed during first 14 days of the storage period. Milk samples stored at 40 and 50 °C showed marked changes in the bands corresponding to conformations of milk lipids and formation of intermolecular β sheet of proteins, indicating protein–lipid interactions and aggregation. Dried sediment contained fat confirming protein–lipid participation in the sedimentation. FTIR was also able to detect changes that led to increased sedimentation in SM at temperatures lower than 40 °C, but only after 28 days.
               
Click one of the above tabs to view related content.