BACKGROUND In emergency services is important to accurately assess and classify symptoms, which may be improved with the help of technology. One mechanism that could help and improve predictions from… Click to show full abstract
BACKGROUND In emergency services is important to accurately assess and classify symptoms, which may be improved with the help of technology. One mechanism that could help and improve predictions from health records or patient flow is machine learning (ML). AIM To analyse the effectiveness of ML systems in triage for making predictions at the emergency department in comparison with other triage scales/scores. METHODS Following the PRISMA recommendations, a systematic review was conducted using CINAHL, Cochrane, Cuiden, Medline and Scopus databases with the search equation "Machine learning AND triage AND emergency". RESULTS Eleven studies were identified. The studies show that the use of ML methods consistently predict important outcomes like mortality, critical care outcomes and admission, and the need for hospitalization in comparison with scales like Emergency Severity Index or others. Among the ML models considered, XGBoost and Deep Neural Networks obtained the highest levels of prediction accuracy, while Logistic Regression performed obtained the worst values. CONCLUSIONS Machine learning methods can be a good instrument for helping triage process with the prediction of important emergency variables like mortality or the need for critical care or hospitalization.
               
Click one of the above tabs to view related content.