LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Potential for Real-Time Monitoring and Control of Dissolved Oxygen in the Injection Water Treatment Process

Photo from wikipedia

Abstract Injection of water into wells is a common practice in offshore oil and gas installations, and here as in many other industries the water has to be deaerated before… Click to show full abstract

Abstract Injection of water into wells is a common practice in offshore oil and gas installations, and here as in many other industries the water has to be deaerated before it is sent through miles of pipelines to reduce the risk of corrosion in those pipelines and other downstream equipment. It requires extremely low concentrations of dissolved oxygen for the corrosion of metals to begin, and removing the dissolved oxygen is currently done in large vacuum deaeration towers, a highly energy demanding process, along with additional injection of chemical oxygen scavengers. In many instances these processes are controlled in a feed-forward manner, where the operators rely on infrequent sampling and corresponding measurements to control the process. The possibilities for optimisation in this field are thus numerous. The main challenges are online measurements of dissolved oxygen and their use in feedback control. This article gives a brief review of the state-of-the-art and investigates the potential of using dissolved oxygen as a reliable feedback parameter, taking inspiration from onshore waste water industries which have been dealing with dissolved oxygen feedback control since the 1970’s.

Keywords: water; control; injection water; process; dissolved oxygen

Journal Title: IFAC-PapersOnLine
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.