Abstract The objective of this work is to present a closed-loop guidance algorithm for landing a probe on an irregular shaped rotating asteroid. The main assumption is that the spacecraft… Click to show full abstract
Abstract The objective of this work is to present a closed-loop guidance algorithm for landing a probe on an irregular shaped rotating asteroid. The main assumption is that the spacecraft is orbiting close to the asteroid and has a continuous propulsion system enabling it to do a powered descent. The goal is to minimize fuel consumption while avoiding collision with the asteroid during the manoeuvre. This non-convex time-continuous optimal control problem is transformed to a convex static program by relaxing some constraints, discretizing and using an iterative method to handle with the asteroid gravity field non-linearities. Then, a guidance algorithm based on Model Predictive Control is applied with the purpose of coping with unmodelled dynamics and disturbances. Numerical results are showed and discussed.
               
Click one of the above tabs to view related content.