LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybrid Latent Variable Modeling of High Dimensional Time Series Data

Photo by jontyson from unsplash

Abstract This paper is concerned with high dimensional time series data analytics based on hybrid dynamic and static latent variable modeling. Application areas can include industrial data analytics, dynamic feature… Click to show full abstract

Abstract This paper is concerned with high dimensional time series data analytics based on hybrid dynamic and static latent variable modeling. Application areas can include industrial data analytics, dynamic feature extraction, econometric data modeling, image sequence modeling, and other high dimensional time-correlated data analytic problems. As collinearity is typical in these high-dimensional data, the interest is to extract the latent driving factors which are concentrated in a reduced subspace. Furthermore, in the latent subspace, variations in some dimensions are auto-correlated, while those in other dimensions are not auto-correlated. We present in this paper several latent dynamic variable modeling methods to extract the principal variations in the data, either dynamic or static, in a low dimensional latent subspace. The approaches effectively distill and separate latent features in the data for easy interpretation, prediction, and visualization. The dynamic latent variables are extracted to have maximized predictability, in terms of correlation or covariance between the latent variables scores and the predicted values from the past scores. A simulation data case study is presented to illustrate how these latent dynamic analytics extract important features from the data.

Keywords: high dimensional; dimensional time; time series; latent; variable modeling

Journal Title: IFAC-PapersOnLine
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.