LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fault Detection of Biological Phenomena Modeled by S-systems ⁎

Photo from wikipedia

Abstract In this work we propose a novel fault detection (FD) technique in order to enhance monitoring of biological processes. To do that, a new statistical FD method, that is… Click to show full abstract

Abstract In this work we propose a novel fault detection (FD) technique in order to enhance monitoring of biological processes. To do that, a new statistical FD method, that is based on combining the advantages of the double exponentially weighted moving average (EWMA), called Max-DEWMA, with those of the particle filtering (PF), and multiscale representation is developed. The advantages of PF-based multiscale (MS) Max-DEWMA (M-DEWMA) are threefold: (i) the dynamical multiscale representation is proposed to extract accurate deterministic features and decorrelate autocorrelated measurements; (ii) PF is proposed to estimate the states of biological processes; (iii) MS-M-DEWMA chart is able to detect smaller fault shifts in the mean/variances and enhance the monitoring of biological processes. The FD performance is studied using Cad System in E. coli (CSEC) model. PF-based MS-M-DEWMA is used to enhance FD of the CSEC model through monitoring some of the key variables involved in this model such as enzymes, lysine and cadaverine.

Keywords: fault detection; detection biological; biological phenomena; modeled systems; phenomena modeled; biological processes

Journal Title: IFAC-PapersOnLine
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.