Abstract This paper concerns the problem of static output feedback (SOF) fault–tolerant controller (FTC) design for uncertain networked control systems (NCSs) considering stochastic actuator faults. The NCSs in the presence… Click to show full abstract
Abstract This paper concerns the problem of static output feedback (SOF) fault–tolerant controller (FTC) design for uncertain networked control systems (NCSs) considering stochastic actuator faults. The NCSs in the presence of random delays and data packet dropouts are firstly modeled as Markovian jump linear systems (MJLSs) with partly unknown transition probabilities (TPs). Afterward, sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to ensure finite–time stochastic stability (FTSS) of the closed–loop system. The Simulation results demonstrate the effectiveness and reliability of the controller.
               
Click one of the above tabs to view related content.