LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Physiologically Structured Equation to Consider Quota Heterogeneity in the Droop Model

Photo by thinkmagically from unsplash

Abstract The Droop model allows to represent microalgae growth limited by a nutrient, using a cell quota (also referred to as variable-yield) approach. Single-cell measurements have revealed quota heterogeneity in… Click to show full abstract

Abstract The Droop model allows to represent microalgae growth limited by a nutrient, using a cell quota (also referred to as variable-yield) approach. Single-cell measurements have revealed quota heterogeneity in phytoplankton collected from field studies. Such heterogeneity can be due, among other factors, to spatial structure (e.g. in biogeochemical cycles in the ocean, or for photobioreactors connected in series). Nonetheless, quota heterogeneity is generally omitted in modelling studies, using an average quota approach, or included in size-structured or individual-based models. Here, we propose a distributed Droop equation to tackle this problem, considering subpopulation growth -in line with Droop macroscopic view- rather than cell division dynamics. We provide analytical solutions for two case studies. First, we consider a constant substrate concentration without biomass input, which leads to a monomorphic population. The second case, considering a biomass input without substrate, leads to quota heterogeneity. Simulations are then carried out for the two case studies (showing good agreements with the analytical solutions) and for a more general case. Finally, we show that the error induced by the average quota approach increases considerably with microalgae plasticity (i.e. the maximal over minimal quota ratio), which points out the benefit of considering quota heterogeneity in these cases.

Keywords: equation; heterogeneity; droop model; quota heterogeneity

Journal Title: IFAC-PapersOnLine
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.