Abstract In this paper we consider model predictive control (MPC) design for roll angle control for a fixed-wing unmanned aerial vehicle (UAV) with multiple segmented control surfaces. The challenge of… Click to show full abstract
Abstract In this paper we consider model predictive control (MPC) design for roll angle control for a fixed-wing unmanned aerial vehicle (UAV) with multiple segmented control surfaces. The challenge of roll angle control for a fixed-wing UAV consists of switching between inner and outer aileron pairs with hard constraints due to safety, energy saving and switching actuators. The novelty consists of formulating a hybrid control problem as a switched linear constrained MPC-QP problem and switched state observer design for fixed-wing UAV. A fast novel QP-solver based on the active-set QP-solver Hildreth is developed to meet the real-time implementation sampling time of Ts = 10 ms. The designed MPC controllers are simulated using Matlab. Simulations and the CPU-time from the improved QP-solvers show MPC to be a very good solution for real-time roll angle control of fixed-wing UAVs.
               
Click one of the above tabs to view related content.