Abstract Reliable guidance of fixed-wing Unmanned Aerial Vehicles (UAVs) is challenging, as their high maneuverability exposes them to several dynamical changes and parametric uncertainties. Reliability of state-of-the-art guidance methods is… Click to show full abstract
Abstract Reliable guidance of fixed-wing Unmanned Aerial Vehicles (UAVs) is challenging, as their high maneuverability exposes them to several dynamical changes and parametric uncertainties. Reliability of state-of-the-art guidance methods is often at stake, as these methods heavily rely on precise UAV course dynamics, assumed in a decoupled first-order form with known time constant. To improve reliability of guidance for fixed-wing UAVs, this work proposes a novel vector field law that can handle uncertain course time constant and state-dependent uncertainty in the course dynamics arising from coupling. Stability is studied in the Lyapunov framework, while reliability of the proposed method is tested on a software-in-the loop UAV simulator. The simulations show that, in the presence of such uncertainty, the proposed method outperforms the standard vector field approaches.
               
Click one of the above tabs to view related content.