LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlled microparticle separation using whispering gallery mode forces

Photo from wikipedia

Abstract There is a wide variety of applications that require sorting and separation of micro-particles from a large cluster of similar objects. Existing methods can distinguish micro-particles by their bulk… Click to show full abstract

Abstract There is a wide variety of applications that require sorting and separation of micro-particles from a large cluster of similar objects. Existing methods can distinguish micro-particles by their bulk properties, such as their size, density, and electric polarizability. These methods, however, are not selective with respect to the individual geometry of the particles. In this work, we focus on the use of a resonance effect between a microparticle and an evanescent light field known as the Whispering Gallery Mode (WGM) force. The WGM force is highly sensitive to the radius of the particle and is both controllable and tunable. In this paper, we explore through simulation the design of a WGM-based device for micro-particle separation. In this device, particles flow in through an inlet and are carried over two actuation regions given by waveguides carrying laser light to generate the evanescent field. Particles are observed by a camera, allowing for feedback control on the power of the lasers. While the basic control structure is simple, there are several challenges, including unknown disturbances to the fluid flow, limited laser power, and uni-directional control over each actuation region. We combine Expectation Maximization with Kalman filtering to both estimate the unknown disturbance and filter the measurements into a position estimate. We then develop simple hybrid controllers and compare them to the ideal setting (without any constraints) based on a Linear-Quadratic-Gaussian (LQG) control approach.

Keywords: separation; whispering gallery; gallery mode; microparticle

Journal Title: IFAC-PapersOnLine
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.