LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust Actuator Fault Diagnosis Algorithm for Autonomous Hexacopter UAVs

Abstract This paper presents a robust actuator fault diagnosis algorithm for hexacopter Unmanned Aerial Vehicles (UAVs). The algorithm, based on Adaptive eXogenous Kalman Filter (AXKF), consists of two-stage operations: (i)… Click to show full abstract

Abstract This paper presents a robust actuator fault diagnosis algorithm for hexacopter Unmanned Aerial Vehicles (UAVs). The algorithm, based on Adaptive eXogenous Kalman Filter (AXKF), consists of two-stage operations: (i) a nonlinear observer and (ii) a linearized adaptive Kalman filter. To this end, we provide a sufficient condition for the nonlinear observer and recursive formulas for the linearized adaptive Kalman filter. The algorithm is tested for actuator fault diagnosis of a hexacopter UAV. Simulation results show that the proposed cascaded algorithm is able to accurately estimate the magnitude of the actuator fault.

Keywords: hexacopter; fault diagnosis; actuator fault; actuator

Journal Title: IFAC-PapersOnLine
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.