Abstract This paper presents a robust actuator fault diagnosis algorithm for hexacopter Unmanned Aerial Vehicles (UAVs). The algorithm, based on Adaptive eXogenous Kalman Filter (AXKF), consists of two-stage operations: (i)… Click to show full abstract
Abstract This paper presents a robust actuator fault diagnosis algorithm for hexacopter Unmanned Aerial Vehicles (UAVs). The algorithm, based on Adaptive eXogenous Kalman Filter (AXKF), consists of two-stage operations: (i) a nonlinear observer and (ii) a linearized adaptive Kalman filter. To this end, we provide a sufficient condition for the nonlinear observer and recursive formulas for the linearized adaptive Kalman filter. The algorithm is tested for actuator fault diagnosis of a hexacopter UAV. Simulation results show that the proposed cascaded algorithm is able to accurately estimate the magnitude of the actuator fault.
               
Click one of the above tabs to view related content.