LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing interfacial strength between AA5083 and cryogenic adhesive via anodic oxidation and silanization

Photo from wikipedia

Abstract AA5083 aluminum alloy was treated in turn with phosphoric-sulfuric acid anodic oxidation and then with silanization using the silane coupling agent KH560. A chemical bond (Si-O-Al) was created between… Click to show full abstract

Abstract AA5083 aluminum alloy was treated in turn with phosphoric-sulfuric acid anodic oxidation and then with silanization using the silane coupling agent KH560. A chemical bond (Si-O-Al) was created between the aluminum alloy and silane film, and a dehydration condensation reaction occurred between the silane film and cryogenic adhesive to enhance the bonding strength between the aluminum alloy and the cryogenic adhesive. Scanning electron microscopy, Energy dispersive spectroscopy, and Fourier transform infrared spectroscopy were used to explore the interfacial characteristics of the aluminum alloy both with and without the applied treatment. Furthermore, single lap shear tests and durability tests were performed to assess the adhesive strength of the interface between the aluminum alloy and the cryogenic adhesive at low temperature. The most improved interfacial strength using the anodic oxidation and the silanization treatments reached 33.96 MPa at −60 °C. The interface strength with the same treatments after the durability test was 25.4 MPa.

Keywords: strength; aluminum alloy; anodic oxidation; oxidation silanization; spectroscopy; cryogenic adhesive

Journal Title: International Journal of Adhesion and Adhesives
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.