Abstract AA5083 aluminum alloy was treated in turn with phosphoric-sulfuric acid anodic oxidation and then with silanization using the silane coupling agent KH560. A chemical bond (Si-O-Al) was created between… Click to show full abstract
Abstract AA5083 aluminum alloy was treated in turn with phosphoric-sulfuric acid anodic oxidation and then with silanization using the silane coupling agent KH560. A chemical bond (Si-O-Al) was created between the aluminum alloy and silane film, and a dehydration condensation reaction occurred between the silane film and cryogenic adhesive to enhance the bonding strength between the aluminum alloy and the cryogenic adhesive. Scanning electron microscopy, Energy dispersive spectroscopy, and Fourier transform infrared spectroscopy were used to explore the interfacial characteristics of the aluminum alloy both with and without the applied treatment. Furthermore, single lap shear tests and durability tests were performed to assess the adhesive strength of the interface between the aluminum alloy and the cryogenic adhesive at low temperature. The most improved interfacial strength using the anodic oxidation and the silanization treatments reached 33.96 MPa at −60 °C. The interface strength with the same treatments after the durability test was 25.4 MPa.
               
Click one of the above tabs to view related content.