LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bifidobacteria-derived lipoproteins inhibit infection with coxsackievirus B4 in vitro.

Photo from wikipedia

The aim of the present study was to investigate the potential of bifidobacteria in protecting cells from coxsackievirus B4 (CV-B4) infection. Bifidobacterial screening identified two of five strains that protected… Click to show full abstract

The aim of the present study was to investigate the potential of bifidobacteria in protecting cells from coxsackievirus B4 (CV-B4) infection. Bifidobacterial screening identified two of five strains that protected human epithelial type 2 (HEp-2) cell viability when bifidobacteria were incubated with viral particles prior to inoculation. In contrast, no effect was shown by incubating HEp-2 cells with bifidobacteria prior to CV-B4 inoculation. Cell wall lipoprotein aggregates (LpAs) secreted by the selected strains were assayed for their antiviral activity. The two LpAs exhibited antiviral activity when they were incubated with viral particles prior to inoculation of HEp-2 cells. Recombinant LpA-derived protein exhibited identical antiviral activity. To identify the peptide sequences interacting with the virus particles, LpA proteins were aligned with the peptide sequences of the north canyon rim and puff footprint onto coxsackievirus and adenovirus receptor (CAR). The in silico molecular docking study using CV-B3 as template showed low-energy binding, indicating a stable system for the selected peptides and consequently a likely binding interaction with CV-B. Bifidobacterium longum and Bifidobacterium breve peptides homologous to the viral north rim footprint onto CAR sequence formed hydrogen bonds with several viral residues in the north rim of the canyon, which were already predicted as interacting with CAR. In conclusion, proteins from bifidobacterial LpAs can inhibit infection with CV-B4, likely through binding to the capsid amino acids that interact with CAR.

Keywords: prior inoculation; infection; inhibit infection; bifidobacteria; car; coxsackievirus

Journal Title: International journal of antimicrobial agents
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.