LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Release of large amounts of lipopolysaccharides from Pseudomonas aeruginosa cells reduces their susceptibility to colistin.

Photo from wikipedia

Pseudomonas aeruginosa is an important etiological agent of opportunistic infections. Injectable colistin is available as a last-line treatment option for multidrug-resistant P. aeruginosa infections. When cells were inoculated at a… Click to show full abstract

Pseudomonas aeruginosa is an important etiological agent of opportunistic infections. Injectable colistin is available as a last-line treatment option for multidrug-resistant P. aeruginosa infections. When cells were inoculated at a high number, colistin-susceptible P. aeruginosa grew on agar medium containing colistin at a concentration 10-fold higher than the minimum inhibitory concentration without acquiring colistin resistance. This study examined the responsible mechanism for growth in the presence of a high concentration of colistin. Cell wash fluid derived from P. aeruginosa efficiently reduced colistin antimicrobial activity. This reduction was mediated by lipopolysaccharide (LPS) in the wash fluid. Extracellular LPS inhibited colistin activity more effectively than cell-bound LPS in fixed cells. Cell wash fluids from Escherichia coli and Acinetobacter baumannii also reduced colistin activity; however, they were less potent than those from P. aeruginosa. The amount of LPS in cell wash fluid from P. aeruginosa was approximately 10-fold higher than that in fluid from E. coli or A. baumannii. In conclusion, cell-free LPS derived from bacterial cells inhibited the antimicrobial activity of colistin, and this effect was greatest for P. aeruginosa. Thus, large amounts of broken and dead cells of P. aeruginosa at infection foci will reduce the effectiveness of colistin, even against cells that have not yet acquired resistance.

Keywords: pseudomonas aeruginosa; fluid; colistin; large amounts; activity; aeruginosa

Journal Title: International journal of antimicrobial agents
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.