LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid emergence of highly variable and transferable oxazolidinone and phenicol resistance gene optrA in German Enterococcus spp. clinical isolates.

Photo by enchaxcreative from unsplash

The number of linezolid-resistant Enterococcus spp. isolates received by the National Reference Centre for Staphylococci and Enterococci in Germany has been increasing since 2011. Although the majority are E. faecium,… Click to show full abstract

The number of linezolid-resistant Enterococcus spp. isolates received by the National Reference Centre for Staphylococci and Enterococci in Germany has been increasing since 2011. Although the majority are E. faecium, clinical linezolid-resistant E. faecalis have also been isolated. With respect to the newly discovered linezolid resistance protein OptrA, the authors conducted a retrospective polymerase chain reaction screening of 698 linezolid-resistant enterococcus clinical isolates. That yielded 43 optrA-positive strains, of which a subset was analysed by whole-genome sequencing in order to infer linezolid resistance-associated mechanisms and phylogenetic relatedness, and to disclose optrA genetic environments. Multiple optrA variants were detected. The originally described variant from China (optrAWT) was the only variant shared between the two Enterococcus spp.; however, distinct optrAWT loci were detected for E. faecium and E. faecalis. Generally, optrA localized to a plethora of genetic backgrounds that differed even for identical optrA variants. This suggests transmission of a mobile genetic element harbouring the resistance locus. Additionally, identical optrA variants detected on presumably identical plasmids, that were present in unrelated strains, indicates dissemination of the entire optrA-containing plasmid. In accordance, in vitro conjugation experiments verified transfer of optrA plasmids between enterococci of the same and of different species. In conclusion, multiple optrA variants located on distinct plasmids and mobile genetic elements with the potential for conjugative transfer are supposedly causative for the emergence of optrA-positive enterococci. Hence, rapid dissemination of the resistance determinant under selective pressure imposed by extensive use of last-resort antibiotics in clinical settings could be expected.

Keywords: optra variants; enterococcus spp; resistance; enterococcus; clinical isolates; emergence

Journal Title: International journal of antimicrobial agents
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.