In this study, we extracted lignin from Canna edulis ker residue. Its chemical structure, inhibitory activity on α-d-glucosidase, and kinetics as well as interaction mechanism were investigated by using spectrum… Click to show full abstract
In this study, we extracted lignin from Canna edulis ker residue. Its chemical structure, inhibitory activity on α-d-glucosidase, and kinetics as well as interaction mechanism were investigated by using spectrum analysis and docking simulation. The isolated lignin was composed by guaiacyl and syringal units, and exhibited stronger inhibition on α-d-glucosidase than acarbose with the half maximal inhibitory concentration at 5.3±0.3μM. It was a non-competitive inhibitior with Km and Ki values of 0.53±0.02mM and 0.92±0.12μM, respectively. It could quench the intrinsic fluorescence of α-d-glucosidase through a static quenching mode. The calculated values of enthalpy and entropy change were 20.8±2.5kJmol-1 and 172.7±0.8Jmol-1K-1, respectively. There was a single binding site on α-d-glucosidase for lignin, and the binding distance was 3.2nm. The molecular docking analysis exhibited that the hydrogen bonds, hydropholic interaction, and van der Waals forces were the main forces for lignin bind to α-d-glucosidase. This work provides a new insight into the interaction between the lignin and α-d-glucosidase, which might be beneficial to type 2 diabetes with the application of lignin in functional food and pharmacy fields.
               
Click one of the above tabs to view related content.